How the owl resolves auditory coding ambiguity.
نویسنده
چکیده
The barn owl (Tyto alba) uses interaural time difference (ITD) cues to localize sounds in the horizontal plane. Low-order binaural auditory neurons with sharp frequency tuning act as narrow-band coincidence detectors; such neurons respond equally well to sounds with a particular ITD and its phase equivalents and are said to be phase ambiguous. Higher-order neurons with broad frequency tuning are unambiguously selective for single ITDs in response to broad-band sounds and show little or no response to phase equivalents. Selectivity for single ITDs is thought to arise from the convergence of parallel, narrow-band frequency channels that originate in the cochlea. ITD tuning to variable bandwidth stimuli was measured in higher-order neurons of the owl's inferior colliculus to examine the rules that govern the relationship between frequency channel convergence and the resolution of phase ambiguity. Ambiguity decreased as stimulus bandwidth increased, reaching a minimum at 2-3 kHz. Two independent mechanisms appear to contribute to the elimination of ambiguity: one suppressive and one facilitative. The integration of information carried by parallel, distributed processing channels is a common theme of sensory processing that spans both modality and species boundaries. The principles underlying the resolution of phase ambiguity and frequency channel convergence in the owl may have implications for other sensory systems, such as electrolocation in electric fish and the computation of binocular disparity in the avian and mammalian visual systems.
منابع مشابه
Optimal models of sound localization by barn owls
Sound localization by barn owls is commonly modeled as a matching procedure where localization cues derived from auditory inputs are compared to stored templates. While the matching models can explain properties of neural responses, no model explains how the owl resolves spatial ambiguity in the localization cues to produce accurate localization for sources near the center of gaze. Here, I exam...
متن کاملA Neural Mechanism for Time-Window Separation Resolves Ambiguity of Adaptive Coding
The senses of animals are confronted with changing environments and different contexts. Neural adaptation is one important tool to adjust sensitivity to varying intensity ranges. For instance, in a quiet night outdoors, our hearing is more sensitive than when we are confronted with the plurality of sounds in a large city during the day. However, adaptation also removes available information on ...
متن کاملTemporal coding in the sub-millisecond range: Model of barn owl auditory pathway
Binaural coincidence detection is essential for the localization of external sounds and requires auditory signal processing with high temporal precision. We present an integrate-and-fire model of spike processing in the auditory pathway of the barn owl. It is shown that a temporal precision in the microsecond range can be achieved with neuronal time constants which are at least one magnitude lo...
متن کامل14 Hebbian Learning of Pulse Timing in the Barn Owl Auditory System
Hebbian learning refers to an unsupervised correlation-based adaptation mechanism and is usually formulated in terms of mean firing rates. In this Chapter we study learning at the spike level. The learning process is driven by the temporal correlations between presynaptic spike arrival and postsynaptic firing. To explore the effect of learning on pulse coding, we consider the example of auditor...
متن کاملSpontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
In vertebrate auditory systems, the conversion from graded receptor potentials across the hair-cell membrane into stochastic spike trains of the auditory nerve (AN) fibers is performed by ribbon synapses. The statistics underlying this process constrain auditory coding but are not precisely known. Here, we examine the distributions of interspike intervals (ISIs) from spontaneous activity of AN ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 18 شماره
صفحات -
تاریخ انتشار 1998